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Abstract  

The topological extrapolation method for the modelling of polymer properties 
ffEMPO) is outlined. It is based on the topological description of the polymer elementary 
units by means of the normalised Wiener number represented as a polynomial in degree 
3 with respect to the number of atoms. The properties of the infinite polymers are 
evaluated by making use of a specific extrapolating technique applied to regression 
models derived for the respective polymerhomologous series. The inherent topological 
background of the TEMPO approach makes its predictions more reliable than the known 
Pad6 approximation. The method is extensively applied to the calculation of n-electron 
energies and energy gaps of various conjugated polymers, as well as to the assessment 
of the melting point, density, refractive index, and specific rotation of some industrially 
produced polymers. 

1. Introduction 

Contemporary theoretical chemistry has to answer a major challenge: how to 
derive molecular properties from molecular structure. This problem is not only of 
academic interest, it is closely concerned with the design of new compounds with 
valuable properties such as drugs, organic semiconductors, conductors, or even 
superconductors, organic magnets, special polymers, etc. Quantum chemistry, albeit 
of essential importance, so far cannot answer all questions. Related to this, different 
quantitative structure-property relationships have been proposed, mainly on an 
empirical basis. In a later stage of development, the interest of scientists was to a 
great extent centered on those molecular properties in which topological structure 
is a dominant factor [5-15]. 

Polymer science also follows closely these trends. Thus, polymer properties 
are frequently assessed by group additivity methods [16]. According to them, some 
properties can be determined as a sum over all the individual contributions of  
atoms, bonds and atomic groups in the structure. The graph-theoretical background 
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of the additivity schemes has been first revealed by Smolenski [17, 18], who associated 
the "weight" of the different atoms, bonds, and atomic groups with the number of 
the respective subgraphs of the graph representing a chemical structure. These 
topological ideas have been developed further by Gordon, Kennedy, and Essam 
[19-22],  who provided an algorithm based on a combination of all subgraphs. 

Although the additive schemes are very popular in polymer science, they 
have some pitfalls. In fact, what Smolenski, Gordon and others did makes the theory 
exact, but in practice applications are impractical. On the other hand, the contribution 
of some atomic groups may vary within a certain range depending on the type of 
polymer. In dealing with polymers having more complicated atomic groups (e.g. 
long side-chains in the monomer unit), the contribution of such a group differs from 
that of the sum of its constituents. This prompted the search for other approaches. 
Semiempirical structure-property relationships have been reported in which 
different polymer properties, and first of all the melting point ,  were found 
to correlate with such parameters as the number of carbon atoms [23,24] or 
heteroatoms [25], etc. 

A more general approach to such structure-property studies could be based 
on molecular topology, as described by graph theory [26]. Such a method was 
developed by the present authors [1-4] ,  proceeding from a particular topological 
index, the so-called Wiener number [27,28]. The latter is a very convenient 
measure of molecular compactness, as well as of the branching [29,30] and 
cyclicity [31-33] of a molecular skeleton, and it was widely applied to the modelling 
of various molecular properties [34-43].  It will be shown in this paper that after 
some modifications, the Wiener topological index is in a state to reflect quite 
satisfactorily various polymer properties, as well. Included here are also the electronic 
properties of the polymers containing conjugated n-electron systems for which a 
number of quantum-chemical [44,47] or graph-theoretical [48-52] methods have 
been devised. 

2. The Wiener  number  

Molecular topology proceeds basically from the a tom-a tom connectedness 
or, otherwise, from neighborhood relationships. The latter are expressed by the 
adjacency matrix of the molecular graph G, A(G). Its entries are either aii = 1 for 
i, j -neighboring atoms or aij = 0, otherwise. Another matrix of considerable interest 
is the distance matrix of the graph D(G). It is also a square N x N matrix, symmetrical 
with respect to the main diagonal, N being the total number of atoms. The distance 
dij between a pair of atoms i and j equals the number of bonds (or graph edges) 
along the shortest path connecting i and j:  dij = 1,2,  3 . . . . .  dmax- The half-sum of 
the distance matrix elements specifies the total distance of the graph known as the 
Wiener number W. As an example, the adjacency and distance matrices of a benzene 
molecule are shown, together with the calculation of W: 
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1 2 3 4 5  6 /i 1,/ 1 0 1 2 
D(G)=  2 1 0 1 ' 

5 3 2 1 0 
6 2 3 2 1 

W ( G )  = 
N 

i,j=l 

= 6 . 1 + 6 . 2 + 3 . 3 = 2 7 .  

The Wiener number mirrors such major features of molecular topology like 
branching and cyclicity of the molecular skeleton. 

3. The TEM PO method 

The topological extrapolation modelling of polymers (TEMPO) is based on 
the Wiener number and includes the following stages: 

(1) Representing the Wiener index of each polymerhomologous series as a 
polynomial in degree 3 with respect to the total number of atoms N. 

(2) Normalizing the Wiener index by dividing it by another polynomial in 
degree 3 so as to  arrive at a finite value for infinite polymers. Calculation of the 
Wiener index W~ normalized for N ---) ,,o. 

(3) Representing the polymer property X under consideration as a regression 
model, the single variable in which is the normalized Wiener number of the respective 
polymerhomologous series: X = f ( W  ). Calculation of the bound value this property 
has for an infinite polymer X~. 

(4) Searching for a general dependence between the bound values of the 
property modelled and the Wiener number of a series of polymers X..=f(l~'~). 
Predictions of  the property values for other polymers proceeding from their topology 
(Woo) only. 

In resolving the first problem, one may present the Wiener index of a polymer 
having n elementary units as follows: 

Wn = nW1"l + (n - 1)Wl~ + (n - 2)W1~ + . . .  + 1W{~ + k, (1) 

where W~I is the Wiener index for the elementary unit, while W~i is the sum of all 
distances between the 1st and ith elementary units and k is a correcting term having 
different values depending on the ways of attaching the elementary units. Then, all 
Wli may be expressed by means of W~2, the closed form of which depends on thc 
specific topology of elementary unit linkages. 

In the case of corona-fused benzenoid elementary units attached to each other 
by a single cata-fusion site (fig. 1), the whole structure being of D2h symmetry, 
k = 1 and 
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Fig. 1. Scheme of a corona-fused benzenoid polymer whose 
elementary units are linked by a single cata-fusion site a - a .  

W{. = W{2 + (n - 2)L, (2) 

where L depends on both the number of atoms in the elementary unit N~ and the 
min. shortest distance between the first and third such units D13 • 

L =/-~min  Mr2 
" 1 3  " 1  " (3) 

On the other hand, W(2 may also be expressed explicitly by taking into 
consideration the symmetry with respect to the linear polymer main axis x: 

W{2 = N f ( 4 d a -  N{)/2. (4) 

Here, d" is the distance number (the sum of the distances to all vertices in 
the unit) of one of the two vertices which constitute the fusion site for a pair of 
elementary units (see fig. 1). 

After substituting eq. (2) into eq. (1), one arrives at the following result: 

Wn = ~ [Ln 3 + 3(WI~ - L ) n  2 + (6Wll - 3Wl' 2 + 2L - 6)n + 6]. (5) 

Equation (5) can also be expressed as a function of the total number of atoms 
N instead of the number of  elementary units n by replacing n = ( N -  2)/N~.  

The second stage of the TEMPO method includes the Wiener number normalizing 
by dividing it by both the total number of graph distances (H) and edges (B): 

= F W  = W [ H B  = 2 W / N ( N  - 1)B. (6) 

The Wiener number thus normalized represents the mean topological distance 
per bond in the structure under consideration. On the other hand, the total number 
of bonds B may be determined from the well-known equation for the number of 
graph cycles (the cyclomatric number) v, 

B = N + v -  1, (7) 

where v is additive for any polymer composed of n fused elementary units: 
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N - 2  
v = n v l  - - -  v l .  (8)  

Nf  

One thus obtains for B 

B = [(N - 1)(Nf+ v , ) -  vl l /N; .  (9) 

Therefore, the normalized Wiener number is a ratio of  two polynomials in 
degree 3, i.e. at N ---> ~, it will be a finite number, 

I~ .  = lim W 4: ~.  (10) 
N - ~  

One may resume that the first two TEMPO stages provide the topological 
description of  the polymer of  interest, a description which is then used to predict 
the polymer properties. A number of  the polymer properties (physicochemical,  
electronic, optical, etc.) can be calculated by this method, proceeding from the 
numerical values of  these properties (experimental or calculable ones) for the initial 
members of  the respective polymerhomologous series. As will be discussed further, 
the number n of  such data, necessary for a reliable calculation, varies for the 
different polymers, depending strongly on the elementary unit size as well as on the 
irregularity introduced by the initial member(s) of  each series. The least-squares 
fitting of  the property X and the normalized Wiener number W is expressed by 
linear or quadratic functions. The quality of  the fit is characterized by the correlation 
coefficient r and standard deviation s. Significance t-test is always made for the 
regre=ssion coefficient of  the quadratic term at a 95% level. Then, by substituting 
the W ,  value into the equation X = f (W)  thus found, one obtains the X** bound 
value which property X has for an infinite polymer. 

4. An illustration 

The procedure is illustrated below by the infinite polycoronene chain 
(tag. 2) .  

Fig. 2. The graph of an infinite polycoronene 
polymer for which D~ aa = 6 (the black zig-zag 
line), the number of atoms in the elementary unit 
is N~ = 22, and the distance number of the fusion 
point a (specified for one elementary unit) is d." = 93. 
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Proceeding from the intermediate results W{~ = 1001, L = 2904, W~2) = 3850, 
and B = ( 2 9 N - 3 6 ) / 2 2 ,  one obtains 

Wn = 484n 3 + 473n 2 + 44n + 1 
o r  

WN = (22N 3 + 341N 2 - 660N + 264)/484, 

and 

F = 44/(29N 3 - 65N 2 + 36N), 

(11) 

(12) 

(13) 

l~oo = lira 22N3 +341N2 - 6 6 0 N  + 2 6 4  = 0 . 0 6 8 9 6 6 .  ( 1 4 )  

N---~oo 11(29N 3 -  65N z + 36N) 

For the specific HMO re-electronic energy E,~ (rt-electronic energy per electron) 
and H O M O - L U M O  energy gap AE,~ of  the series, one obtains 

En = 1.5194 - 0.6523W, 

n = 1 0 ,  r = l . 0 0 0 ,  s = 0 . 0 0 0 0 4 ,  

while for the H O M O - L U M O  gap, the regression is 

AEn = 0.9009 - 10.9359W+ 111.712W 2, 

n = 9(2 - 10), r = 0.9998, s = 0.0012. 

Hence, 

E= = 1.474; AE= = 0.678 (in [3 units). 

(15) 

(16) 

4.1. ELECTRONIC n-ENERGIES 

4.1.1. Acyclic, peri- and catafused, and bridged conjugated polymers 

In this section, we summarize all the results obtained so far by the TEMPO 
method for the specific re-electronic energies and energy gaps of  infinite polymers. 
They are all open chain polymers, regarded as quasi-monodimensional crystals. 
Included here are mainly benzenoid polymers (cata-, peri-, and corona-fused), as 
well as a few alternant and non-alternant non-benzenoid or mixed benzenoid systems. 

The 25 polymeric systems included in the initial TEMPO studies [1 -3 ]  and 
reevaluated for the present study are shown in fig. 3. Their rt-electronic energies 
were estimated within the HMO-approximation [1], as well as by the PPP-method 
[2] for polymers 8, 12, 14-20 ,  and 24. In addition, the influence of  some structural 
modifications of  polymers 8, 12, 14-17,  19-21 ,  and 24 on their electronic properties 
has also been studied [3]. More specifically, the latter case deals with the attachment 
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Fig. 4. Two structural modifications of polymers 8, 12, 14-17, 19-21, 
and 24 from fig. 3, including the attachment of acyclic conjugated 
branches with (a) one atom, (b) two atoms, illustrated by polymer 8. 
Two different attachment types are shown for polymers 16 and 21. 

21 O' 

of acyclic conjugated branches with one and two atoms, as dispayed in fig. 4. The 
two different attachment modes of polymers 16 and 21 are also shown. 

The polymers derived for the Wiener number vary from very simple to rather 
complicated ones: 

polymer 7: W= N3/8, (17) 

polymer 8: W = (2N 3 + 9N)/18, (18) 

polymer 12: W = (N 3 + 3N2)/12, (19) 

polymer 7b: W = (88N 3 + 1719N 2 + 149990N- 2876112)/290. (20) 

The normalized Wiener index values for the infinite polymers under study are 
given in the first three columns of table 1. As seen, this topological index displays 
a fair discrimination, although some degeneracy of its values takes place. The latter 
does not affect calculated electronic energies (tables 1 and 2) since they are determined 
by different regression equations. 
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Table 1 

Wiener numbers and specific re-electron energies of the 25 infinite polymers from fig. 3. 

No." W .  I~.. (a) b I~ ,  (b) b ~ .  (HMO)C ~ .  c.a "~ (ppp)¢ 

1 0.3333 1.268 1.274 
2 0.1667 1.216 1.216 

3 0.1333 1.316 
4 0.1111 1.435 
5 0.0833 1.636 
6 0.0833 1.581 

7 0.2000 1.225 
8 0.1905 0.1212 0.0889 1.397 1.398 48.78 
9 0.1429 1.396 

10 0.0952 1.400 1.399 
11 0.1250 1.416 

12 0.1250 NBMO 0.0833 1.412 50.90 
13 0.1250 1.425 
14 0.1333 0.0952 0.0740 1.402 51.74 
15 0.0833 0.0583 0.0556 1.452 1.455 64.94 
16 0.0606 0.0455 0.0784 1.477 1.483 70.60 

17 0.1333 0.0952 0.0740 1.434 1.437 49.73 

18 0.1333 1.427 1.429 53.01 
19 0.0833 0.0666 0.0556 1.476 1.484 61.02 
20 0.1026 0.0784 0.0634 1.454 1.461 60.03 
21 0.0702 0.0580 0.0493 1.482 1.496 
22 0.0580 1.426 

23 0.0580 1.426 

24 0.0741 0.0666 0.0606 1.457 62.01 
25 0.0667 1.378 

"According to fig. 3. bAccording to fig. 4. t in 13-units. dRef. [49]. t in  eV. 

Some examples of  the correlations between the normalized Wiener index and 
the specific g-electronic energy as calculated in I]-units within the Hiickel or PPP 
molecular orbital approximation are given below: 

polymer 15: EHMO = 1 .502-0 .6061~,  (21) 

n = 6 ,  r=0 .999 ,  s = 4 . 3 x 1 0 - 4 ;  

polymer 25: EHMO = 1 .419-  0.7225W + 1.6031,~ 2, (22) 

n = 6, r = 0.9999, s = 2.3 x 10-4; 

polymer 19: Eppp = 138.38-  1163.51~ + 2819.71~ 2, (23) 

n = 7 ,  r=0 .9826 ,  s =  1.8. 
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In general, the correlation coefficient is close to 1: in twenty-one out of 
twenty-five HMO cases, it is either 0.999 or 1.000. The standard deviation in 
thirteen cases does not exceed 5 × 10 -4 and only in six cases is it slightly greater 
than 10 -3. This high accuracy is achieved in six cases with a simple linear function, 
and in nineteen others with a quadratic function. Even the simplest linear function 
provides a correlation coefficient close to 0.99 and a standard deviation not greater 
than 3 × 10 -3. Similarly, the ten equations obtained for the PPP-electronic energy 
(two linear and eight quadratic ones) have a correlation coefficient within the 
0.973-1.000 range and a standard deviation 1.5-3.3. All these evidence that the 
normalized Wiener number is a topological index very appropriate for the calculation 
of the n-electronic energy of conjugated polymers. 

Table 1 also contains the calculated bound values of the infinite polymers' 
specific HMO-electronic energy, which are within the 1.22-1.64 [3-units range. In 
eleven cases, they are compared to the energy calculated from the explicit HMO- 
formulae of Tyutyulkov and Polansky [49], deduced by the finite differences method. 
The coincidence obtained is very high (A < 0.012), which may be regarded as an 
evidence for the reliability of the two different approaches. On the other hand, the 
PPP-specific electronic energies provide generally a polymer ordering similar to 
that of the HMO-energies, polymer 8 being the least stable, while polymer 16 is 
the most stable one. 

Applying the fourth stage of the TEMPO procedure, a general dependence 
was obtained between the specific HMO-electron energies and the normalized Wiener 
indices of twelve infinite polymers (nos. 4, 12-21, and 24). These are fused non- 
branched benzenoid and non-benzenoid systems containing six- and four-membered 
rings. Indeed, one could hardly expect to arrive at an equation comprising all 
twenty-five polymers under consideration, due to the great difference in their topology 
(acyclic, fused-, bridged-, and branched polycyclic systems with 3-, 4-, 5-, 6-, and 
7-membered rings). The linear dependence obtained shows that the specific n- 
electronic energy increases with the decrease in the normalized Wiener number of 
the infinite polymers: 

E=(HMO) = 1.531 - 0.843Wo0, (24) 

n = 12, r = 0.899, s = 0.012. 

The trend thus found is similar to the previous finding [44] that the n- 
electronic energy of fused polycyclic molecules increases with the increase in the 
cyclicity, i.e. with the decrease in the Wiener number. The same trend was found 
also for the PPP-electronic energies of ten polymers (given in the last column of 
table 1), although the dependence is more complicated: a quadratic one with a 
negative W~o term: 

E=(PPP) = 97.53 - 588.01~00 + 1718W 2 , (25) 

n = 10, r = 0.910, s = 3.7. 
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One should also mention here the capability of the Wiener number to produce 
approximately thesame specific n-electron energies for polymers having similar 
structure. Thus, W.. = 0.0580 for both polymers 22 and 23, for both of which 
E**(HMO) = 1.426. Similarly, W.~ = 0.0833 for the pair of polymers 5 and 6, which 
have E. .(HMO)= 1.636 and 1.581, respectively. 

Equations (24) and (25) reveal good possibilities for calculating the specific 
n-electronic energy of  other conjugated polymers, proceeding from their topology 
only, i.e. from the W~ values. As an illustration, we calculated the E.. values of 
four additional polycyclic polymers: 

structure 26: 

structure 27: 

26 

I 

27 

I ~  = 0.0667, E~(HMO) = 1.475, 

I~.. = 0.0870, E..(HMO) = 1.458, 

28 

structure 28: 

structure 29: 

E=(PPP) = 59.43 eV, 

E..(PPP) = 55.91 eV. 

29 

Other conjugated polymers with a similar structure may be treated in this 
manner. Equations (24) and (25) thus provide a fast prediction of the n-electron 
energy of this important class of polymers. 

4.1.2. Coronoid polymers 

In addition to the conjugated polymers containing cata- and peri-fused benzene 
cycles, some polymers were studied the elementar units of which contain corona- 
fused benzene rings (fig. 5). The interest toward these polymers increased sharply 
during the last five years (see, for example, ref. [53]). They were selected so as to 
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Fig. 5. Corona-fused benzenoids regarded as 
elementary units of six conjugated polymers. 

examine the possible importance for electronic energy of different structural patterns, 
such as the different size and shape of the internal macrocycle, the addition of 
benzene cycles peri-fused at the outer periphery of the elementary units, etc. 

Aiming at more precise extrapolations, oligomers with 1 to 10 elementary 
units were taken into consideration for each series. Additional information on the 
matter was obtained by omitting the first or the last member in each of the series. 

The intermediate results obtained in the first part of the applied procedure are 
shown in table 2. The Wiener number W and the normalizing factor F were presented 
as polynomials in degree 3 of the total number of atoms N or the number of 
elementary units n. The last column contains the Wiener number normalized for 
infinite polymers (N --, oo). Due to the similarity in the monomer unit structure, these 
numbers are close to each other or even, for polymers 5 and 6, they are the same. 
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Table 2 

Wiener topological index W and its normalizing factor F as polynomial functions 

of  the number of  atoms N and that o f  the elementary units n, as well as the 
normalized Wiener number value ~ .  for the infinite polymers of  fig. 5. 

No5 The Wiener number W "b and W .  
the normalizing factor F b 

1 484n 3 + 473n 2 + 44n + 1 0.068966 

(22N 3 + 341N 2 - 660N + 264)/484 

44/(29N 3 - 65N 2 + 36N) 

2 (7220n 3 + 3363n 2 + 1660n + 3)/3 

(190N 3 + 2223N 2 + 51908N - 109896)/4332 

76/(49N 3 - 109N z + 60N) 

3 4232n 3 + 1725n 2 + 960n + 1 

(92N 3 + 1173N 2 + 38364N - 80040)/2116 

92/(59N 3 - 131N 2 + 72N) 

4 (9680n 3 + 5808n 2 + 2236n + 3)/3 

(5N 3 + 102N 3 + 1768N-  3852)/132 

88/(57N 3 - 127N 2 + 70N) 

5 6804n 3 + 2079n 2 + 1958n + 1 

(14N 3 + 147N 2 + 10992N - 22360)/324 

108/(69N 3 - 153N / + 84N) 

6 6804n 3 + 2511n 2 + 1542n + 1 

(14N 3 + 195N 2 + 8304N - 17176)/324 

108/(69N 3 - 153N 2 + 84N) 

0.068027 

0.067797 

0.058480 

0.067633 

an is the number of elementary units. 

bN is the total number of  atoms. 
eAccording to fig. 5. 

Table 3 

Specific x-electronic energy E,~(HMO) of the six coronoid polymer- 

homologous series of  fig. 5 as a linear function of  the normalized 

Wiener index W, as well as the energy values for infinite polymers E . .  

No. a Specific x-electron energy r s E~ 

1 1.5194 - 0.6523 I~ 1.0000 0.00004 1.474 

2 1.4862 - 0.5397 W 0.9963 0.00051 1.449 

3 1.4770 - 0.47021~ 0.9957 0.00046 1.445 

4 1.4678 - 0.43001~ 0.9977 0.00035 1.443 

5 1.4650 - 0.41171~ 0.9919 0.00053 1.437 

6 1.4678 - 0.4120!~' 0.9951 0.00041 1.440 

aAccording to fig. 5. 
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Table 3 contains the calculated HMO-energies per electron, E~, of the six 
coronoid polymers presented as linear functions of the normalized Wiener number, 
As seen, the correlation is very high (r = 0.992-1.000) and the standard deviation 
is very small (s < 0.00053). The regression may be improved even further by omitting 
the first member of the series, thus increasing r to 0.997-1.000 and diminishing 
the standard deviation to s < 0.0002. The extrapolated E~, values remain practically 
the same. 

Inspection of all E.o values shows that they are within the 1.437- 1.474 range, 
which is an indication of their high stability. The six infinite polymers may be 
ordered according to their specific ~-electronic energy as follows: 

1 > 2 > 3 > 4 > 6 > 5 .  

Some trends are traced within this inequality sequence. The latter, however, 
decreases with the increase in the distance between the elementary unit junction 
points A~ i" (e.g. series 1-2-3-5). 

The very high accuracy of the equations in table 3 results from the high 
degree to which the Wiener number describes the topology of polymerhomologues. 

4.2. HOMO-LUMO GAP 

4.2.1. Acyclic, cata- and peri-fused, and bridged conjugated polymers 

The second electronic characteristic studied was the ~-electronic energy gap 
which is related to the conductivity of polymers. The calculated HMO [1,3] and 
PPP [2] energy gaps of twenty-four conjugated polymers from fig. 3 and their 
structural modifications shown in fig.4 are collected in table 4. Structure 11 is not 
included since the lack of benzene rings in this 5-membered ring system alters 
strongly the energy of the highest occupied molecular orbital, which results in a 
very low correlation with the normalized Wiener index (r = 0.187). In the remaining 
twenty-four cases, the correlation is high, the correlation coefficient being in fourteen 
cases equal to 0.999 or 1.000, while in the remaining ten cases it is within the 0.982 
to 0.998 range. In eleven cases, the standard deviation is less than 5 x 10 -3. In five 
cases only it is greater than 2 x 10 -2, due to the large relative but not absolute 
deviation from the zero gap. These results were obtained by making use of fifteen 
quadratic and nine linear AE/W equations. 

As seen in table 4, in half of the twenty-four polymers a zero HMO energy 
gap was found: these are cases 1, 4, 6, 7, 12, 14, 15, 16, 21, 22, and 23. The cases 
with a HMO energy gap AE~, < 0.017 are also included since this numerical value 
is within the error limits of the current procedure. In five out of the seven cases, 
the zero predicted gaps gaps are in accord with the results of Tyutyulkov and 
Polansky [49] (the remaining five series have not been examined by these authors). 
In comparing the polymers with non-zero gaps, a good agreement was found for 
numbers 2, 10, 17, 18, where A < 0.012 13-units. For four other cases, the disagreement 
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Table 4 

Energy gaps of the twenty-four infmite polymers from fig. 3 and their structural modifications 
given in fig. 4. 

No? AE.(HMO) b AE~ b'c AE.(PPP) a AE~ b'e AE.  b'~ 

1 0.006 
2 0.823 0.828 

3 0.385 

4 0.017 0 
5 0.805 
6 0.004 

7 0.007 
8 0.772 0.828 

9 1.274 

10 0.893 0.890 
12 0 0 
13 0.581 0.494 

14 0 0 
15 0 0 
16 0 0 
17 0.752 0.764 

18 0.693 0.695 

19 0.613 0.494 
20 0.098 0 
21 0 0.469 

22 0 

23 0 
24 0.600 

25 0.149 

5.40 0.514 0.518 

3.42 NBMO 0 

2.24 
0.80 
0.52 

5.41 
5.09 

4.64 

2.84 

4.53 

0.376 
0.182 

0.089/0.090 

0.030 

0 

0 
0/0.031 

0.145 

0 
0 
o/o 
0.408 

0.533 
0.045 

0/0.109 

0.599 

aAccording to fig. 3. 
bin ~ units. 
CRef. [49]. 
din eV. 
~According to fig. 4. 

between the two methods is significantly larger: no. 8, A = 0.056; no. 13, A = 0.087; 
no. 19, A = 0.119. This discrepancy can be explained by the different symmetry of 
the infinite polymers, which are taken in our study to be open chain polymers, while 
in ref. [49] the respective cyclopolymers are taken under consideration. A drastic 
disagreement between the two calculations was found for polymer 21, where an 
energy gap of 0.47 was reported instead of the TEMPO zero gap. In order to check 
the symmetry reasonings for this strong disagreement, we re-examined polymer 21 
with an open chain having C2v-symmetry like that of the cyclopolymer: 
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D2h [ 2v 

an open chain polymer a cyclopolymer 
(our study) (ref. [49]) 

Surprisingly, the energy gap thus calculated for polymer 21 was AE** = 0.226, 
which is approximately half the value for the cyclopolymer of  the same symmetry.  
These results may be regarded as an evidence for the non-zero gap of  the polymer 
with C2v-symmetry. 

The energy gaps of the examined conjugated polymers are always greater 
when calculated by the PPP method [2] than those determined by the Htickel 
method [1], a result anticipated by other authors [49]. Comparison of  columns 1 and 
3 in table 4 also reveals a certain correspondence between the two types of calculations. 
Thus, the polymers with zero HMO-gaps have smaller PPP-gaps than those with 
a non-zero H~ickel forbidden zone. Polymers 15 and 16 were found to have rather 
small gaps, which is an indication for a possible enhanced conductivity. 

The influence which the addition of acyclic conjugated branches has on the 
HMO-energy gaps of  some of  the twenty-five polymers was also studied. Again, 
a high correlation was found between the AE.. and W= values, the correlation 
coefficient being with very few exceptions 0.999 or 1.000. The standard deviation 
is also in most cases less than 0.01. Some illustrative examples are given below: 

polymer 12b: AE= = -0 .9201 + 9.9191~, (26) 

n = 7, r = 0.9997, s = 0.0078; 

polymer 14a: AE= = -0 .3409 + 0.02435W + 3.587W 2, (27) 

n = 9, r = 0.9999, s = 0.0012. 

The results obtained upon the structural modifications examined reveal two 
major trends: (i) The monocarbon branch addition to an alternant hydrocarbon with 
a non-zero gap reduces the latter. The attachment of  a second atom at each branch 
enhances the gap again. Typical examples are polymers 17 and 19, having a gap 
of  0.752 and 0.613, respectively. The methylene branch additions reduce these gaps 
to zero, while the ethylene ones result in non-zero gaps of 0.408 and 0.533, respectively. 
(ii) The monocarbon branch addition to a zero-gap polymer produces a non-zero gap, 
while the subsequent lengthening of the branches with a second carbon atom reduces 
the gap to zero again. Polymers 14 and 15 exemplify this trend, their gaps being 
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enhanced upon the first modification to 0.376 and 0.182, respectively, and then 
returning again to zero value upon the second modification. One should mention, 
however, that the two structure alterations have a minor effect on the zero gaps of 
polymers 20 and 21. 

4.2.2. Coronoid polymers 

The dependence of the HOMO-LUMO energy gap on the normalized Wiener 
index was studied in more detail in the case of corona-fused benzenoid polymers 
(fig. 5). Both linear and quadratic functions were examined for the polymerhomologous 
series having all ten members each, or having nine members due to the omission 
of the first or last member. The last case (with n = 1-9) produces a correlation with 
exactly the same correlation coefficients and standard deviations of the series having 
ten members. The predicted values of AE= also change marginally (A = 0-0.003 for 
both the linear and quadratic function). One may thus come to the conclusion that 
less than ten elementary units suffice for reliable AE~ predictions, the reason being 
the large size of each such unit. 

For two systems (numbers 4 and 5), the AE= prognoses were found to be 
practically independent of the type of function (linear or quadratic) and the correlation 
sample (n = 1 - 10, 1-9  or 2-10) with A(AE=) < 0.002. For two other series (numbers 
2 and 6), A(AE=) = 0.004. The largest difference in the predicted values is displayed 
by series number 1. 

All three linear-type prognoses proved to be very close to each other. In 
dealing with the n = 1-10 sample, the quadratic function improves the correlation 
as compared to the linear one, leading to correlation coefficients within the 0.9993- 
0.9999 range and the standard deviation being 0.0002-0.0012 for 5 series, while 
being 0.0050 for the remaining series 1. Omitting the first member in each series 
(n = 2-10)  results in a further improvement of the correlation; the best correlation 
coefficients increasing to 0.9997 and the largest standard deviation being 0.0012. 

The predicted energy gaps do not change essentially as compared to the 
n = 1-10 sample (A < 0.003), but the deviation is higher for series 1 (A = 0.018). 
Our analysis thus indicates that the AE/Woo correlation is best manifested by the 
quadratic function for the same samples containing all 1-10 members in each series 
or even better for the sample with n = 2 -  10. These two types of correlations are 
given in table 5 for the six coronoid polymerhomologous series examined. 

None of the six polymerhomologous series of corona-benzenoids examined 
was found to have a zero gap for the infinite polymer. The ordering of the latter 
according to the AE= values is the following: 

no. 3 > 1 > 6 > 2 > 5 > 4 

AE= 0.69 0.68 0.62 0.57 0.43 0.12. 

Some conclusions result from the inspection of this sequence. Two trends 
were traced which diminish the HOMO-LUMO separation. The first one is related 
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Table 5 

Energy gaps of the six corona-benzenoid polymerhomologou=s series given in 
fig. 5 as quadratic functions of the normalized Wiener index W, as well as the 

gaps for the infinite polymers AE=. 

No. a Energy gap b r s AE, 

1 0.1817 + 6.29433 + 9.3035W z 0.9993 0.0050 0.660 

0.9009 - 10.9359W + 111.7121~ 1z 0.9998 0.0012 0,678 

2 0.2228 + 4.9895 3 + 1.4040W z 0.9998 0.0012 0.569 

0.6017 - 4 . 9 4 1 6 3  + 66.235W 2 0.9998 0.0004 0.572 

3 0 .6415-2 .49803  +46 .7283  2 0.9999 0.0007 0.687 

0.8976 - 9.29043 + 91.6383 2 0.9998 0.0004 0.689 

4 0.0670 + 1.02393 - 2.63363 l 0.9997 0.0002 0.118 

0.1085 - 0.2011 3 + 6.33953 l 0.9998 0.0001 0.119 

5 0.1325 +4 .48043  - 2.43733 l 0.9999 0.0007 0.424 

degenerate matrix 

6 0.3182 + 6.1341 3 - 25.0163 l 0.9995 0.0006 0.619 

0.5800 - 0.8639 3 + 21.628 3 2 0.9997 0.0002 0.620 

aAccording to fig. 5. 
bFirst row: n =  1-10, second row: n =2 -10 .  

to the elongation of the fragments containing linearly fused rings, as is the case with 
polymers 3 and 6 as well as with 2 and 5. The presence of benzene rings that are 
peri-fused in the middle of the outer periphery of the structure is strongly favorable 
for smaller gaps (polymers 4 as compared to polymer 2). 

Proceeding from the two favorable structural patterns thus revealed, one may 
expect that their combination could produce polymers with a very small gap. Such 
a polymer could be polymer 7 shown below: 
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The normalized Wiener number  of this polymer  is: 

= 14N 3 + 273N 2 + 11208N - 23260, (28) 

3(77N 3 - 171N 2 + 94N) 

where I~'= = 14/(3.77) = 0.060606. 
The linear and quadratic regression models derived for the HMO energy gap 

of  the first ten members  of this polymerhomologous  series are 

AE.~ = 0.0473 + 0.20631~, 

n = 10, r = 0.9957, s = 0.0002; 

(29) 

AE~ = 0.0335 + 0 . 5 6 6 1 1 ~ '  - 2.2812W 2, 

n = 10, r = 0.9997, s = 0.00005. 

(3o) 

As anticipated, proceeding from the favorable trends diminishing the energy 
gap of  the corona-fused benzenoid polymers,  both models predict the gap of the 
infinite polymer  7 to be as small as 0.06. 

Concluding this section, one may resume that the TEMPO approach based 
on the topological  index of Wiener, conveniently normalized for infinite polymers,  
provides a reliable description of the polymer electronic properties. As was well 
exemplif ied,  this method provides the design of new polymers with low energy 
gaps, high n-electronic energies, etc. From this, one proceeds with both a qualitative 
analysis of  the major structural trends and generalized equations (like eqs. (24), (25)) 
for series of  polymers with similar structure in which the n-electronic energy or 
energy gap is calculated from the monomer  topology only. Other physical or chemical 
properties could be treated in the same manner,  as shown in the fol lowing section. 

4.3. PHYSICO-CHEMICAL PROPERTIES OF POLYMERS 

In this section, different thermal, volume, and optical properties such as 
melt ing point Tm, density d42°, refractive index n 2°, and specific rotation d 2° 
of  polymers  are treated by the TEMPO approach. Nine polymerhomologous  
series were taken under  consideration, viz. alkanes, oligoesters, oligoamides,  
o lygooxy-methylenes ,  ol igoimines,  ol igopeptides,  halogenated alkanes, and 
olygooxy-ethylenes [4]. The respective polymers are shown in fig. 6, listed in the 
fol lowing order: (1) polyethylene, (2) cyclic polyethylene, (3) polyethyleneimine,  
(4) polyoxyethylene ,  (5) polyoxymethylene ,  (6) polycapramide,  (7) polytetra-  
f luoroethylene,  (8) poly-L-proline, and (9) polyethyleneterephthalate.  Molecular  
graphs of these polymers are given in fig. 6 in several modifications - with and 
without  hydrogen atoms, as well as without terminal groups or fluorine atoms. 
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9b 

Fig. 6. Molecular graphs of the nine polymers under study and 
their modifications accounting for the H atom and neglecting 
the terminal groups. Structure 7c does not contain fluorine atoms. 

The following I~/=-values were obtained: 0.083333 for cases 2b, 2c; 0.11111 
for lb, lc, 7a, 7b; 0.125 for 3b, 3d, 8a, 8b; 0.14286 for 4b, 4d; 0.22222 for 8c, 8d; 
0.25 for 2a; 0.29167 for 6s, 6b; 0.33333 for la, 3a, 3c, 4a, 4c, 5a, 7c. Some 
examples of  the correlat ionsderived for the polymer properties under study and the 
normalized Wiener index W are given below (for more details, see ref. [4]): 

polymer 9a: T m = 1 4 6 3 -  53181~', (31) 

n =  10(1 -10) ,  r = 0 . 9 9 4 4 ,  s = 3 . 3 ;  
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polymer 3a: n~ ° = 1.7904 - 1.05561~/ + 0.8088W 2, (32) 

n = 6 (1-9) ,  r = 0.9998, s = 0.0005; 

polymer lb: d42°= 1.1298-2.5131~',  (33) 

n = 12 (5-16) ,  r = 1.0000, s = 0.001; 

polymer 8a: o~°= -1916  + 140661~ + 269811~ '2, (34) 

n = 27 (1-40) ,  r = 0.9975, s = 8.8. 

In table 6, the calculated values of the polymer properties under study are 
compared with the experimental ones, as well as with those obtained by the additive 
group method and Pad6 extrapolation procedure. Three different factors affecting 
the calculated property values were studied. 

An optimized correlation sample is obtained in most cases by excluding the 
initial members of each series because their properties usually deviate strongly from 
the general trend. The calculation of the polytetrafluoroethylene melting point is a 
typical example. The TEMPO method produces a melting temperature within the 
350-464  °C range when all data are used. However, it is within the 312-367  °C 
range, i.e. much closer to the experimental range of 327-342  °C, when the first two 
points are omitted. Similarly, the polyoxyethylene melting point is 48 °C when all 
points are used, whereas it increases to 57 °C upon eliminating the first four points, 
thus approaching the experimental values which are within the 6 0 - 7 6  °C range. 

Careful examination of table 6 also indicates that incorporating H atoms in 
the molecular graph (the latter is usually hydrogen depleted) improves the results 
only for polymers with a very simple structure whose elementary units contain one 
or two carbon (or other non-hydrogen) atoms. Such is the case for polyethylene. In 
dealing with the other polymers where several atoms heavier than hydrogen 
(C, N, O) constitute the elementary units, the hydrogen atom effect is suppressed 
and may be neglected. 

Elimination of the fluorine atoms in polytetrafluoroethylene, however, resulted 
in a melting point value which is lower than the experimental one by 80 °C, while 
the deviation is only 20 °C when these atoms are taken into account. Perhaps one 
may conclude that no other atom heavier than H could be neglected in describing 
polymer topology. 

Neglection of the terminal groups (indicated by an asterisk in table 6) would 
simplify the calculations provided it does not significantly affect their accuracy. We 
observed practically no change of the refractive indices of polyethyleneimine and 
polyoxyethylene, where the terminal groups are hydrogen atoms (Ano 2° < 0.0002). 
Similarly, the change in the specific rotation of poly-L-proline is not really significant 
(Act = 1.5%). In the case of melting points, ATm = 1 -2% for polyoxyethylene, 
polycapramide and polyethyleneterephthalate. For polyethylene and polytetrafluoro- 
ethylene, the deviation is very high (ATm = 22 °C, or 22.5% and 55 °C, or 15%, 
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Table 6 

Experimental and calcualted values for some polymeric properties of the polymers under study. 

Polymer a Property Experimental values b GAM e Padd d TEMPO e'r 

1 T m (°C) 1 3 7 - 1 4 6  [54] 141 21.3 

4 

Tm (°C) 

Tm (°C) 

141 [16] 
110-135 [55] 
104-133 [3] 
105-130 [56] 
0.855 -0.970 [54] 
0.855-1.000 [16] 
0.918-0.968 [55] 
0.918-0.955 [56] 

62-76 [54] 
62-72 [161 
60 [3] 
66 -68 [55] 

1.4563 [54] 
1.51-1.54 [54] 
(high molecular) 
1.458-1.467 [55] 

60.6 
115.0 H 

115.8 123.1 n 
95.4 n* 

0.8833-0.9981 0.8419 
0.8454 
0.8505 tl 

0.8555 0.8506 n 
0.8473* 
0.8495 It* 

- 82.50 
69.6 H 

1.5228 1.528 
1.528 H 
1.526" 
1.528 n* 

140 48.1 
191.1 55.5 

56.9 H 
55.9 H* 

5 Tm (°C) 178-200 [54] 187 
198 [16] 
185 [3] 
173-180  [55] 
173-178 [56] 

6 Tm (°C) 214-250 [54] 207 
214-233 [16] 
215 [31 
210-225 [55] 
215-220 [56] 

7 Tm (°C) 327-342 [54] 300 
327 [3] 
327 [55] 
327 [56] 

1.478 1.470 1.475 

50.5 

230.7 

55.3 

1.475 ~i 
1.474" 
1.475 H~ 

214.8 
231.0 

70.4* 
103.4 ° 

217.2 
214.3 
215.9" 

171.0 
350.5 
366.7 
312.1" 
257.9"" 

• . .  continued 
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Table 6 (continued) 

Polymer a Property Experimental values b GAMc Padd a TEMPO ~,f 

8 Tm (°C) - - 357.8 
359.0 
223.2* 
353.5 ° 

8 ct~ 2 - 5 4 0  [54] - -559 .3  

-570 .6  
-512 .0  -579.3* 

9 T m (°C) 250-265  [54] 203 1193.6 281.3 
265-284  [16] 277.5* 
256 [3] 
255 -265  [55] 
257 [56] 

a The numbering of polymers is given in fig. 6. 
b References used. 
c Method of additive groups [16]. 
d Padd approximation [57]. 

Topological extrapolation method (the values, obtained by the best version of the method, are underlined). 
f H-molecular graphs including hydrogen atoms. *Molecular graphs without terminal groups. **A 

molecular graph without fluorine atoms. 

respectively). Although more polymers should be examined in order to arrive at 
definite conclusions, our preliminary conclusion is that terminal groups should not 
be neglected when using the TEMPO procedure. 

The best TEMPO values of the polymer properties under investigation are 
underlined in the last column of table 6. They are obtained by taking into account 
the terminal groups, neglecting the initial members of the polymerhomologous 
series and, in some case, by accounting for hydrogen atoms. As seen in table 6, 
these best values are very close to the experimental ones. Thus, for the melting 
points of polymers 1, 4, 5, 6, 7, and 9, the deviation from the nearer bound of the 
experimentally determined range is (in °C and %): -6 .9 ,  -11 .9 ,  +33.2,  0, +24.7,  
-2 .7;  and 5.3, 19.8, 16.6, 0, 7.2, 1, respectively. The deviations are small for the 
other properties, as well. They are 0.5%, 1.0% and 3.6% for the density of polyethylene, 
the refractive index of polyoxyethylene and the specific rotation of poly-L-proline, 
respectively. 

Table 6 reveals that the TEMPO and group additive method provide comparable 
results, particularly in estimating the refractive index. In two cases (polymers 4 and 
9), the TEMPO values are much closer than group additive method values to the 
experimental ones: 55.5 °C versus 140 °C versus 62 -76  °C (polymer 4) and 281.3 °C 
versus 203 °C versus 2 5 0 - 2 6 5  °C (polymer 9), respectively. One should, however, 
bear in mind the advantage of the group addition method in providing theoretical 
estimates in cases where experimental data are not available. 
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It was of  considerable importance to compare the predictions of  polymer 
properties made by our topological extrapolation method with those of  the well- 
known Pad6 approximation. The Pad6 values calculcated by us are also given in 
table 6. In the few cases dealing with density, refractive index and specific rotation, 
the two methods provide comparable results. In dealing with melting points, however, 
similar results were obtained for polyethylene and polycapramide only. The Pad6 
melting points of  polyoxyethylene, polyoxymethylene,  polytetrafluoroethylene and 
polyethyleneterephthalate are, however, very poor, the deviations from the nearer 
melting point being + 1 15 °C, - 128 °C, -272  °C, and even +929 °C, respectively. 

The reasons for these unrealistic Pad6 approximations are the following. 
Within this method, a certain quantity is presented by a McLaurin series of  some 
parameter (e.g. the degree of polymerization). In dealing with polymer properties, 
however, the exact functions are not known and the coefficients in the McLaurin 
series must be determined empiricially by least-squares fitting. The Pad6 polynomials 
thus obtained from the failures of this method or, more specifically, small variations 
of  the experimental data, can sometimes significantly change the coefficients, thus 
producing absurd extrapolations. A second reason is that the optimal degree of  the 
Pad6 polynomial (diagonal elements of the Pad6 table) cannot be uniquely determined. 
As a result, the reliability of the Pad6 extrapolations is poor. 

The TEMPO method describes polymer properties in such a manner  which 
mathematically is equivalent to the Pad6 approximants. The major advantage of our 
approach is, however, in a much lesser extent to which the curve fitting is used, 
due to the derivation of exact (uniquely determined) Wiener number polynomials 
reflecting polymer topology. Thus, the TEMPO correlation equations for the polymer 
properties (linear or quadratic functions of  the Wiener topological index) are equivalent 
to polynomials in degree 3 or 6, with the degree of polymerization as a variable. 
Within the Pad6 approach, obtaining the latter type of  polynomials would require 
fourteen empirical coefficients. 
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